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WORK COMPLETED 

Chirplet signal reconstruction algorithms have been developed using MATLAB. A Flexible 

Chirplet Transform algorithm has been developed. Building and implementation of chirplet 

reconstruction algorithms have been completed successfully. Feature extraction and noise removal for 

low frequency acoustic chirp signals have been completed using scalar wavelet, wavelet packet, 

multiwavelet, and chirplet and Fourier techniques. Comparison of these methods has been performed, 

and the results have been analyzed. Adaptive wavelet transform algorithms via lifting have been 

developed and are currently being used to design specific wavelet transforms for low frequency 

broadband simulated chirp signals. 

TECHNICAL RESULTS 

The chirplets investigated in this research are Gaussian amplitude-modulated signals 

parameterized by their location in time, location in frequency, chirp rate, and time duration. Signal 

reconstruction based on chirplet reconstruction theory is dependent upon at least five parameters per 
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chirplet: amplitude, time, frequency, chirp rate, and signal duration (Mihovilovic and Bracewell, 1991, 

1992). 

Table 1 shows the dependencies of six types of data representations of transforms on various 

parameters. A time series or Shannon representation provides data values as a function of time. The 

Fourier transform describes the data in terms of frequency values. The Gabor or time-frequency two- 

dimensional plot shows both time and frequency. The wavelet transform also includes a scaling factor. 

The continuous chirplet transform adds a chirp rate parameter; and using multiple chirplets includes a 

dispersion rate and a time-frequency tile size. 

Table 1. Time   Freq    Scale   Chirp rate       Dispersion rate TF tile size 

Shannon X 
Fourier X 
Gabor X X 
Wavelet X X X 
Continuous Chirplet X X X X 
Multiple Chirplet X X X X X X 

MATLAB code is generated as an adaptation of O'Neill's (2000) chirplet transform codes and 

an adaptive wavelet transform code (Chapa and Rao, 2000). 

Figures 1 and 2 are generated using a maximum likelihood estimation routine for estimating the 

chirplet parameters that was written by O'Neill (O'Neill et al., 2000). The signals in the figures are 

whale whistles represented as a sum of chirplets.   Figure 1 shows the spectrogram of a whale whistle, 

number 61 from the NUWC data set (O'Neill et al., 2000). The dynamic range in the spectrogram is 

50 dB. Below the spectrogram is a time-series of one time trace, and to the left is the log spectrum of 

the trace. Figure 2 shows the same whale whistle with the noise removed via wavelet methods. Below 

the spectrogram is the envelope of the time series. The denoised approximation was made with 8 

chirplets and agrees well with the original. A signal represented by 8 chirplets, each containing 5 



parameters, means 40 parameters must be used to identify it, creating a computationally intensive 

approach to signal classification. 
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Figure 1. Spectrogram of whale whistle 61 from 
NUWC data set with sample time trace and frequency 
spectrum. 

Figure 2. Denoised whale whistle of Fig. 1 
reconstructed with 8 chirplets. 

Figure 3 shows a synthetic chirp at the top. It has approximately constant amplitude and 

frequency increasing with time (upsweep chirp). There is very little noise present and the signal-to- 

noise ratio (SNR) is 8. The second curve shows the chirp with Gaussian white noise added such that 

the SNR is 1.5. Two noise removal techniques were applied to the noisy chirp. The Fourier lowpass 

filtered chirp is shown in the next curve and the wavelet denoised chirp at the bottom. The lowpass 

filter cutoff frequency is 500 Hz. The wavelet used is a Daubechies 5 (db5) with 5 levels. The 

thresholds for denoising are manually set at the values given in Table 2. 

Table 2. level threshold 

5 
4 
3 
2 
1 

4.076 
8.946 
10.03 
9.423 
7.893 



Figure 4 contains the spectrograms calculated from their counterparts in Figure 3. The top 

figure shows the noise-free chirp, and the upsweep in frequency is clear. The chirp is still visible in 

the noisy second figure, but noise removal is needed to clarify the signal. The lowpass filter shown in 

the next figure removes frequencies above 400 Hz, including those present in the chirp, without 

reducing the lower frequencies very much. In the bottom figure showing the wavelet denoising the 

chirp character is again visible.   It is evident that the wavelet algorithm outperforms the Fourier 

method in this case. 
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Figure 3. Top: Synthetic noise free upsweep Figure4.Spectrograms corresponding to the signals 
chirp. Second: Noisy chirp with SNR 1.5. shown in Fig. 3. 
Third: Lowpass filtered noisy chirp; cutoff 
frequency 500 Hz. Bottom: Wavelet 
denoised noisy chirp; db5 wavelet, level 5; 
thresholds set manually. 

Wavelet denoising allows more signal energy to be retained while still removing unwanted 

noise. Fourier analysis removes signal structure as well as unwanted noise, as can be seen in Figure 5, 

which is the lowpass filtered result using a lowpass cutoff of 200 Hz. 



Fourier Denoised Synthetic Chirp 

Figure 5. Top: Lowpass filtered noisy chirp; cutoff 
frequency 200 Hz. Bottom: Spectrogram. 

Wavelet packet denoising as well as wavelet denoising is also tested. Figure 6 shows a 

comparison of the Fourier lowpass filter (top; same as 3rd part of Fig. 4), single wavelet denoising 

(center; same as bottom of Fig. 4), and wavelet packet denoising (bottom). The wavelet used with the 

wavelet packet denoising was a Daubechies 5, level 5. The tree was cut at level 5. The threshold is 6. 
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Figure 6. Top: Noisy synthetic chirp; same as 
second spectrogram in Fig. 4. Middle: Wavelet 
denoised noisy chirp; same as bottom of Fig. 4. 
Bottom: Wavelet packet denoised noisy chirp; 
db5 wavelet, level 5; threshold 6. 



Table 3 shows the energy retained and the amplitude SNRs for the noisy chirp using the noise 

removal techniques discussed above. The lowpass filtered result retains more of the energy than either 

wavelet technique, but some of this energy is noise rather than signal. The SNR for single wavelet 

denoising is larger than for wavelet packet denoising, and both wavelet techniques have larger SNR 

values than the lowpass filter. 

Table 3. 
Energy retained Amplitude SNR 

Low-noisy data 100% 8.0 
Noisy data 100% 1.5 
Lowpass filtered 84% 1.8 
Wavelet denoised 71% 2.6 
Wavelet Packet denoised 76% 2.1 

Figure 7 shows another wavelet denoising of a noisy synthetic chirp using the Haar wavelet, 

level 5, with a threshold of 6 instead of the Daubechies dB5 wavelet, assuming unsealed white 

additive noise. The difference in character of the denoised result is attributed to the box structure of 

the Haar wavelet. 
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Figure 7. Wavelet denoised noisy synthetic chirp using Haar 
wavelet denoising, level 5, using an automatic soft threshold 
of 10. Top: Denoised time signal. Bottom: Spectrogram. 

PRESENTATIONS 

A report on this research, "Wavelet Denoising of Undersea Acoustic Data," was presented at 

the ONR Technical Passive Peer Review at NUWC in Newport, RI, in October 2000. 

At the Chicago meeting of the Acoustical Society of America in June 2001 a paper was 

presented giving some results of this research (Wheatley et al., 2001a). The abstract was published in 

the Journal of the Acoustical Society of America and is included in the Appendix to this report. 

"Denoising of Low Frequency Chirps Using Multiple Mother Wavelets" was presented as a 

dissertation prospectus for the Ph.D. in Engineering and Applied Science Program of the University of New 

Orleans, at Stennis Space Center, MS, in July 2001. 

"Multi-Wavelet Detection and Denoising of Low Frequency Chirp Signals Using Adaptive 

Wavelet Methods" was presented at an ONR Sponsored signal processing program review at the University 

of New Orleans in August 2001. 
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A paper presenting further results was given at the meeting of the Acoustical Society of 

America in Ft. Lauderdale in December 2001 (Wheatley et al., 2001b), and the abstract was also 

published in the Journal of the Acoustical Society of America and is included in the Appendix to this 

report. 

APPENDIX 

Joseph S. Wheatley, Juliette W. Ioup, and George E. Ioup, 2001a, Wavelet detection and 
denoising of low frequency chirp signals, presented at the Acoustical Society of America, Chicago, 4-8 
Jun 2001, and abstracted in Jour. Acoust. Soc. Am. 109, 2296. 

The detection and classification of underwater acoustic signals embedded in noise is a 
fundamental problem of interest to the Navy. The use of wavelet transforms is a recent development in 
digital signal processing that has been applied in many different areas. A particular type of wavelet is 
the chirplet, which includes frequency variation as well as time shift and scaling. The analysis of low- 
frequency signals containing multiple chirps using wavelet and chirplet techniques is demonstrated. 
Examples of low-frequency synthetic chirp signals are generated. Denoising and feature extraction of 
these signals using various wavelets with wavelet packet techniques are described. 

Joseph S. Wheatley, Juliette W. Ioup, and George E. Ioup, 2001b, Multi-wavelet detection and 
denoising of low-frequency chirp signals using adaptive wavelet methods, presented at the Acoustical 
Society of America, Ft. Lauderdale, 3-7 Dec 2001, and abstracted in Jour. Acoust. Soc. Am. 110, 2765. 

The detection and classification of underwater acoustic signals embedded in noise is a 
fundamental problem of interest to the signal processing community. The use of wavelet transforms is 
a recent development in digital signal processing which has been applied in many different areas. A 
particular type of wavelet is the chirplet, which includes frequency variation as well as time shift and 
scaling. Both linear and polynomial chirp signals are present in underwater acoustic signals generated 
by such sources as biologies, ships, and submarines. Distinguishing the features of these chirps 
relative to other ambient noise shows promise as an initial step in classification of underwater acoustic 
signals. Removal of unwanted broadband signal components via wavelet methods has been shown to 
outperform other noise removal processes such as low-pass and high-pass filtering and Weiner 
filtering. Examples of low-frequency simulated chirp signals with additive noise have been generated. 
A multi-wavelet packet method for detection and denoising low-frequency signals containing multiple 
chirps embedded in noise using a specific wavelet designed for polynomial chirp signals is shown. 
[Research supported in part by ONR.] 
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